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Abstract

Estimation of the temperature field in the powder bed in selective laser sintering process is a key issue for under-

standing the sintering/binding mechanisms and for optimising the technique. Heat transfer may be strongly affected by

formation and growth of necks between particles due to sintering when the contact conductivity becomes predominant

in the powder bed effective thermal conductivity. The necks often remain small as compared to the particle size. To

calculate the effective contact conductivity of such structures a model of independent small thermal contacts is pro-

posed. The conductivity of the considered cubic-symmetry lattices and the random packing of equal spheres depends on

the three structural parameters: the relative density, the coordination number, and the contact size. The present model

agrees with the known numerical calculations in the range of contact radius to particle radius ratio below 0.3. The

strong dependence on the contact size is qualitatively confirmed by experimental data.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Selective laser sintering (SLS) technique consists in

depositing successively thin powder layers and heating

and sintering/binding the powder particles by a scanning

laser beam [1]. Three-dimensional parts of a complex

shape can be fabricated by SLS. Flexibility is the main

advantage of this process, therefore a number of com-

puter-controlled rapid prototyping machines have been

developed based on SLS (see, for example, [1]). One of

the disadvantages is that complete powder compaction

is rarely achieved [2] and thus a post-treatment is often

required. On the other hand, this may be useful in syn-

thesizing porous materials [3].

Free poured (loose) or slightly compacted powders

with particle size in the range of several microns to

several hundreds microns are typically used for SLS

[4,5]. They are characterized by high porosity with ini-

tially only point contacts between particles. During laser

heating, various sintering and rearrangement mecha-

nisms induce the powder binding and densification [6].

Sintering gives rise to formation and growth of necks

between the particles, which are in fact surface contacts.

However, the laser-heating time in SLS, which is typi-

cally a fraction of a second up to about several seconds,

is insufficient for complete material compacting by solid

state sintering (requiring usually several hours [7]). With

liquid phase sintering mechanism, complete elimination

of the porosity is generally not possible because repul-

sion forces arise between particles at a high fraction

of the binding liquid component [6]. As a result, the

structure of discrete particles connected by relatively thin

necks usually remains during and after SLS treatment as
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clearly observed on the scanning electron microscope

micrographs [3].

The various types of sintering mechanisms yielding

powder binding, depend strongly on temperature [7].

This indicates that calculation of temperature fields in

the powder bed in SLS plays a key role in understanding

the operating sintering mechanisms (depending on the

powder type and process parameters) and in estimating

the binding kinetics. However, the associated heat

transfer phenomena taking place in SLS process are

complex including incident laser radiation penetration

into the powder bed, thermal radiation transfer, and

thermal conduction through the gas filling the pores and

through the contacts between the particles [8,9]. Thermal

conductivity of gases at the normal pressure is 3–4 or-

ders lower than that of metals, therefore in a wide range

of neck size to particle size ratio, contact conductivity

predominates in the powder bed effective thermal con-

ductivity. It becomes more important if sintering is

performed in vacuum.

A number of models for evaluating the effective

thermal conductivity of composite media containing

inclusions embedded in a homogeneous matrix are

known, starting with the early work of Maxwell [10].

The Maxwell approach is valid if the inclusions volume

fraction or the thermal conductivity difference between

inclusions and matrix is low. This model has been ex-

tended to take into account high concentration of reg-

ularly distributed spherical, cylindrical, and spheroidal

inclusions [11–15], inclusions with interfacial thermal

resistance [13–15], as well as polydisperse [16] and ran-

domly distributed [17] inclusions. Application of nu-

merical methods allows, in principle, to consider any

heterogeneous structure [18].

It should be noted that the above models [10–18] are

difficult to apply to powder beds because they do not

take into account contacts between particles and high

difference in thermal conductivities between a particle

and a gas in the pores. Dedicated models for packed

beds [19–23] and lattices of overlapped spheres [24,25]

have been developed. While some authors paid attention

to the gas filling the pores [19,20], other considered the

contacts between particles [21–25].

The effective contact conductivity ke of the simple

cubic (SC) structure of equal overlapped spheres may be

estimated using the Reimann–Weber equation [24]:

Nomenclature

A area

a contact radius

F heat flux

f distribution function

n coordination number

p relative density

r radial coordinate

r radius-vector

R particle radius

S thermal resistance

T temperature

u normalized temperature

x contact size ratio

z axial coordinate

Greek symbols

f, q normalized coordinates

h polar angle

k thermal conductivity

ke effective thermal conductivity

s normalized temperature

u heat flux density

X unit vector of direction

Fig. 1. (a) Contact of radius a between two spherical particles

with the same radius R and temperatures T1 and T2. (b) Circular
contact between two half-infinite insulated bodies: the thin in-

sulated wall simulates the gap between particles where they are

not in contact. The lines (OZ) and (OR) denote the axes of the

cylindrical frame.
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ke ¼ k
1

x

�
þ 1

p
ln
2

x

��1

; ð1Þ

where k is the conductivity of dense material in the bulk

of a sphere and x ¼ a=R is the contact size ratio, i.e. the

ratio of the contact spot radius a to the sphere radius R
(see Fig. 1(a)). The face centred cubic (FCC), body cen-

tred cubic (BCC), and SC structures of equal spheres

with small contacts were considered based on numerical

calculation of a temperature field in a single sphere with

two surface contacts [21]. Heat transfer between a close-

packed structure of equal spheres and a wall was calcu-

lated in [23]. A numerical method for calculating periodic

lattices was proposed and applied to FCC structure of

overlapped spheres [25]. It was shown that the effective

conductivity of such a structure considerably differs from

the conductivity given by the Maxwell model.

The advantages of numerical methods are evident

when the spheres overlap significantly: the contacts in-

fluence each other and two contacts may even merge

together. However, in the SLS process, the contacts

often remain small. The present work addresses such a

problem and attempts to find a solution. Simplification

are made to allow considering powder beds with a wide

range of porosity and coordination number corre-

sponding to various periodic and random structures.

2. Analysis

The scheme of heat transfer between two particles

with temperatures T1 and T2 is shown in Fig. 1(a). At low

neck radius a, a heat affected zone with a high-temper-

ature gradient is formed near the contact, while the

temperature in the rest of a particle is almost uniform.

The total conductive heat flux through a contact from

the particle with temperature T1 to the one with tem-

perature T2, is

F ¼ ðT1 � T2Þ=S; ð2Þ

where S is the thermal resistance, which may be esti-

mated at x � 1 as that of a circular contact between two

half-infinite bodies with the thermal conductivity of

dense material k as shown in Fig. 1(b).

The steady-state temperature distribution near the

thermal contact may be obtained from the Laplace

equation:

o2T
oz2

þ 1

r
o

or
r
oT
or

� �
¼ 0; ð3Þ

where the cylindrical frame is introduced so that z-axis
connects the centres of the particles and z ¼ 0 corre-

sponds to the contact surface (see Fig. 1(b)). Eq. (3) is

to be solved in the infinite domain, z ¼ �1; . . . ;1,

r ¼ 0; . . . ;1, with the boundary condition of the insu-

lated wall in the plane z ¼ 0 out off the contact:

oT
oz

¼ 0 at fz ¼ 0; r > ag: ð4Þ

Conditions at infinity are the following:

T ! T1 at z ! �1 and at fr ! 1; z < 0g; ð5Þ

T ! T2 at z ! 1 and at fr ! 1; z > 0g: ð6Þ

The problem (3)–(6) is anti-symmetric about the plane

z ¼ 0:

T ðr; zÞ þ T ðr;�zÞ ¼ T1 þ T2: ð7Þ

This means that over the surface of the contact, where

temperature is continuous, it is uniform:

T ¼ T1 þ T2
2

at fz ¼ 0; r < ag: ð8Þ

Taking into account Eq. (7), it is sufficient to solve the

Laplace equation (3) in the half-space z < 0 with the

boundary conditions (4), (5), and (8) or in the half-space

z > 0 with the boundary conditions (4), (6), and (8).

Each of the two problems is the same one, which

arises when one is calculating the electrostatic field of a

charged conductive disk, and may be solved by intro-

ducing the ellipsoidal frame [26]. Finally, the tempera-

ture field of a circular contact is expressed as

T ¼ T1 þ T2�T1
2

uðr=a; z=aÞ; z < 0;

T2 þ T1�T2
2

uðr=a; z=aÞ; zP 0;

�
ð9Þ

where the dimensionless function uðq; fÞ of the dimen-

sionless coordinates q and f is

u ¼ 2

p
arctan

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ f2 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 þ f2 � 1Þ2 þ 4f2

qr :

ð10Þ

Temperature distribution (9) is shown in Fig. 2: it is

discontinuous at the insulated wall, fz ¼ 0; r > ag. The
temperature gradient reaches a maximum at the contact

and decreases with the distance to the contact. The

temperature tends to the constant left and right values at

distances much higher than the contact size. Thermal

resistance of a circular contact between two half-infinite

bodies with the thermal conductivity k is derived from

(9) as

S ¼ T2 � T1
k
R a
0

oT
oz

��
z¼0

2prdr
¼ 1

2ka
: ð11Þ

The fact that a contact between two particles disturbs

the temperature fields in each of them only in a heat

affected zone with the size of the order of several neck

sizes may be used in calculating the effective conduc-

tivity: at sufficiently small necks the contacts formed

between a particle and all the neighbouring particles

may be considered as independent. In this case instead
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of conventional calculating the temperature field in an

elementary cell containing several particles and contacts

between them [20–23,25], it is sufficient to take into

account configuration of contacts in a given powder

structure and to use the thermal resistance of an isolated

contact presented by Eq. (11). This approach is justified

when the contact size ratio is much less than unity,

x � 1. In practice, the upper bound of x may be esti-

mated comparing the results with the known numerical

calculations as presented in Section 4.

3. Results

3.1. Regular structures

Heat flux due to conduction through contacts be-

tween particles in a powder bed may be directly obtained

in the case of a regular structure. In the systems with

cubic symmetry the thermal conductivity tensor reduces

to a scalar. So calculating effective thermal conductivity

along an arbitrary direction is sufficient.

For example, if spherical particles of equal size are

packed in a SC lattice (see Fig. 3) and the gradient of

temperature, rT , is directed along [1 0 0] axis, the heat

flux through the corresponding (1 0 0) plane may be

calculated as follows: Temperature difference between

the upper and lower monolayers is DT ¼ T2 � T1 ¼
2RjrT j. The area of the (1 0 0) plane per one contact

between an upper and lower particles is A ¼ ð2RÞ2
Therefore, the effective heat flux density is 1

u ¼ F
A
¼ DT

SA
¼ kejrT j; ð12Þ

where ke ¼ kx is the effective thermal conductivity of the

cubic structure.

In close-packed structures, such as the FCC one, ef-

fective thermal conductivity in the direction of the nor-

mal to a close-packed plane ([1 1 1] FCC) may be

obtained from Fig. 4. All the plain may be covered by

regular hexagons shown here by thin line. Each hexagon

contains 9 contacts and has an area of 3
ffiffiffi
3

p
R2. Hence,

the average area per contact is A ¼ ð
ffiffiffi
3

p
=3ÞR2. The dis-

tance between the two layers is d ¼ ð2
ffiffiffi
2

p
=

ffiffiffi
3

p
ÞR and the

increment of temperature is DT ¼ djrT j. Substitution of

these expressions into Eq. (12) gives an effective thermal

conductivity of ke ¼ 2
ffiffiffi
2

p
kx.

For particles packed in a diamond-like structure with

a gradient of temperature directed along [1 1 1] axis,

there are three contacts responsible for heat transfer

through each regular hexagon lying in (1 1 1) plain (one

of them is shown in Fig. 5). The average area per contact

is A ¼ 16ð
ffiffiffi
3

p
=3ÞR2 and the temperature difference be-

tween each of the considered pairs of particles is

DT ¼ 2RjrT j. Eq. (12) gives then an effective thermal

conductivity of ke ¼ ð
ffiffiffi
3

p
=4Þkx. The thermal conductiv-

ity of regular structures is summarized in Table 1. Both

the above-considered problems and the results on the

BCC structure are listed there.

Fig. 3. Cubic structure of particles. Cross-section of two ad-

jacent (1 0 0) monolayers: particles (open circles); contacts

(points); (1 0 0) plane (broken line); [1 0 0] direction (arrow).

Fig. 4. Close-packed structure of particles. Two adjacent close-

packed monolayers: particles of the upper layer (full-line circles)

and of the lower one (broken-line circles); contacts between the

upper and the lower layers (points).

τ = 2T - T1- T2

T2- T1

Dimensionless temperature,

Fig. 2. Temperature distribution, T ðr; zÞ, in the heat affected

zone of a circular contact between two half-infinite bodies with

temperatures of T1 (left) and T2 (right): a is the contact radius.
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3.2. Random structure

Let a contact between two contiguous particles be

characterised by its radius-vector �rr taken as the middle

of the segment between the centres of the particles, �rr1
and �rr2: �rr ¼ ð�rr1 þ �rr2Þ=2, and the unit vector of direction,

X ¼ ð�rr1 � �rr2Þ=j�rr1 � �rr2j. The distribution function of

contacts, f ð�rr;XÞ, may be introduced so that f d�rrdX is

the number of contacts inside the element of volume d�rr
and solid angle dX. In the uniform isotropic randomly

packed structure of spheres with radius R, the distribu-

tion is

f d�rrdX ¼ 1

2
pn

d�rr
ð4=3ÞpR3

dX
4p

; ð13Þ

where p is the relative density, i.e. the ratio of the volume

occupied by particles to the total powder bed volume, n
the mean coordination number. The factor of 1=2 in the

right-hand side of Eq. (13) takes into account that two

opposite values of the direction vector, X and �X, cor-

respond in fact to the same contact.

Conductive heat transfer through the plane z ¼ 0,

which is normal to the vector of temperature gradient,

rT (see Fig. 6), may be derived from the distribution

function as

u ¼
Z
4p
dX

Z R cos h

�R cos h

DT ðhÞ
S

f dz; ð14Þ

where h is the polar angle. The limits of integration over

z and the temperature difference through the contact,

DT ðhÞ ¼ 2R cos hjrT j, are chosen here in assumption

that:

(i) the contact between two particles contributes to heat

transfer through a surface only if the centres of the

particles are on the different sides of the surface;

(ii) the difference in temperature between two neigh-

bouring particles depends on their radius-vectors,

�rr1 and �rr2, as

DT ¼ T1 � T2 ¼ ð�rr1 � �rr2ÞrT ¼ 2RXrT : ð15Þ

Eqs. (11)–(15) give the effective thermal conductivity

of a random structure:

ke

k
¼ pn

p
x: ð16Þ

4. Discussion

For the regular structures the effective conductivity is

proportional to the contact size but the proportionality

factors strongly depend on the structure type (e.g. SC,

BCC, FCC, and diamond-like). In general, at a given

contact size the conductivity increases with the density

and the coordination number (see Table 1). As shown in

Fig. 5. Diamond-like structure: particles (spheres with radius

R); unit cell (thin line cube with the edge of 8ð
ffiffiffi
3

p
=3ÞRÞ; plane of

(1 1 1) type (broken line); contacts corresponding to heat

transfer through the plane (points).

Fig. 6. Heat transfer through necks in the random structure of

spherical particles: particles (open circles); contacts between

particles (points). Axis Z is directed along the vector of tem-

perature gradient. Only contacts contributing to heat transfer

through the marked plane (broken line) are shown. Thin lines

link the centres of particles, which take part in the heat transfer

through the plane.

Table 1

Effective thermal conductivity of regularly packed equal

spheres, ke

Structure pa nb ke=ðkxÞc

FCC p
ffiffiffi
2

p
=6 ¼ 0:740 12 2

ffiffiffi
2

p
¼ 2:828

BCC p
ffiffiffi
3

p
=8 ¼ 0:680 8

ffiffiffi
3

p
¼ 1:732

SC p=6 ¼ 0:524 6 1

Diamond p
ffiffiffi
3

p
=16 ¼ 0:340 4

ffiffiffi
3

p
=4 ¼ 0:433

aRelative density.
bCoordination number.
cDimensionless thermal conductivity.
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Fig. 7, the Reimann–Weber model [24], and numerical

calculations of Siu and Lee [21] give slightly nonlinear

conductivity dependencies on the contact size x. When x
tends to zero, the Reimann–Weber equation (1) provides

exactly the same result as the present consideration for

the SC lattice. The present model somewhat overesti-

mates the effective conductivity at higher x. However, at

least in the range 0 < x < 0:3 it satisfactorily agrees with

the existing models (see Fig. 7).

The proportionality between the effective conductiv-

ity and the contact size remains in the case of random

packing. Eq. (16) gives an explicit dependence of the

proportionality factor on the relative density p and the

mean coordination number n. Note that there is no

difference in effective conductivity between the consid-

ered regular structures with cubic symmetry and random

structures with the same values of p and n. This may be

easily verified by substituting the values given in Table 1

into Eq. (16). Application of various methods of powder

compacting in SLS process gives rise to structures with

various density and coordination number, what may

considerably influence the effective thermal conductivity

according to Eq. (16).

The above theoretical consideration indicates that the

effective contact conductivity of powders in SLS process

essentially depends on the three structural parameters:

the relative density p, the mean coordination number n,
and the contact size ratio x. However, in the numerous

experimental studies of powder bed thermal conductiv-

ity stimulated by the development of the SLS technique

(see, for example, [27–29]), the only parameter really

taken into consideration was the powder density. Of

course, a correlation seems to exist between the coor-

dination number and the density. An example of such a

correlation is given by the sequence of regular structures

with a wide range of density in Table 1: n increases with

p. However, for actual randomly packed powders dif-

ferent coordination numbers are possible for the same

density, and thus it is better to treat the two parameters

independently from each other.

In the works [29,30] it was pointed out that the ef-

fective thermal conductivity of a powder bed might

change considerably after a high-temperature heating

due to contact area growth during sintering. This qual-

itatively agrees with our result that the contact effective

conductivity is proportional to the contact size. A

quantitative experimental study of the contact size im-

pact requires separation of the contact, radiative, and

gas contributions to the effective thermal conductivity

along with careful structure investigation to estimate the

contact size ratio x.
The only essential assumption made in the above

theory is the independency of heat transfer through

different contacts between particles justified by their

small sizes. Therefore, it may be, in principle, extended

to take into account polydisperse powders or non-

spherical particles. The issue is, however, to describe

structures of such powders. This may require further

experimental studies or computer simulations.

5. Conclusion

During SLS process, powder beds have usually a

structure of discrete particles connected by thin necks.

To calculate the effective contact conductivity of such

structures a model of independent small thermal con-

tacts is proposed. The conductivity of the considered

cubic-symmetry lattices and of the random packing of

equal spheres is described by the same equation (Eq.

(16)): it depends on the three structural parameters

namely the relative density, the mean coordination

number, and the contact size. According to the present

model, the effective thermal conductivity is propor-

tional to the linear dimension of the contact, which

approximately agrees with the existing numerical and

analytical models in the range of contact size ratio of

0 < x < 0:3. The strong dependence on the contact

size is qualitatively confirmed by experimental mea-

surements. Application of various methods of pow-

der compacting in SLS process gives rise to structures

with various density and coordination number, what

considerably influences the effective thermal conduc-

tivity.

0 0.1 0.2                     0.3
Contact size ratio, x

0

0.2

0.4

0.6

N
or

m
al

iz
ed

co
nd

uc
tiv

ity
,λ

e
/λ

Present model
Siu and Lee [21]
Reimann-Weber [24]

FCC

BCC

SC

Diamond

Fig. 7. Effective conductivity of powder bed versus contact size.

Comparison between the present model (solid curves) and those

of Siu and Lee [21] (broken curves) and Reimann and Weber

[24] (chain curve, Eq. (1)) for equal spheres packed in cubic

lattices: FCC, BCC, SC, and Diamond-like (marked near the

corresponding curves).
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